Форма входа |
---|
Категории раздела | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Поиск |
---|
|
Наш опрос |
---|
Мини-чат |
---|
Контроль |
---|
Партнёры |
---|
Главная » Статьи » Радиолюбителям | [ Добавить статью ] |
Резисторы являются элементами РЭА и могут применяться как дискретные компоненты или как составные части интегральных микросхем.. Они предназначены для перераспределения и регулирования электрической энергии между элементами схемы. Принцип действия резисторов основан на использовании свойства материалов оказывать сопротивление протекающему через них электрическому току. Особенностью резисторов является то, что электрическая энергия в них превращается в тепло, которое рассеивается в окружающую среду. По назначению дискретные резисторы делятся на резисторы общего назначения, прецизионные, высокочастотные, высоковольтные и высокоомные. По постоянству значения сопротивления резисторы подразделяются на постоянные, переменные и специальные. Постоянные резисторы имеют фиксированную величину сопротивления, у переменных резисторов предусмотрена возможность изменения сопротивления в процессе эксплуатации, сопротивление специальных резисторов изменяется под действием внешних факторов: протекающего тока или приложенного напряжения (варисторы), температуры (терморезисторы), освещения (фоторезисторы) и т.д. По виду токопроводящего элемента резисторы делятся на проволочные и непроволочные. По эксплуатационным характеристикам дискретные резисторы делятся на термостойкие, влагостойкие, вибро- и ударопрочные, высоконадежные и т.д. Резисторы гибридных ИМС изготавливаются в виде резистивных пленок, наносимых на поверхность подложки. Эти резисторы могут быть тонкопленочными (толщина пленки порядка 1 мкм) и толстопленочными (толщина пленки порядка 20 мкм). Резисторы полупроводниковых ИМС представляют собой тонкую (толщиной 2-3 мкм) локальную область полупроводника, изолированную от подложки и защищенную слоем SiO2. Основным элементом конструкции постоянного резистора является рези-стивный элемент, который может быть либо пленочным, либо объемным. Величина объемного сопротивления материала определяется количеством свободных носителей заряда в материале, температурой, напряженностью поля и т.д. и определяется известным соотношением
где r - удельное электрическое сопротивление материала, l - длина резистивного слоя, s - площадь поперечного сечения резистивного слоя. В чистых металлах всегда имеется большое количество свободных электронов, поэтому они имеют малую величину r и для изготовления резисторов не применяются. Для изготовления проволочных резисторов применяют сплавы никеля, хрома и т.д., имеющие большую величину r. Для расчета сопротивления тонких пленок пользуются понятием удельного поверхностного сопротивления rs , под которым понимается сопротивление тонкой пленки, имеющей в плане форму квадрата. Величина rs связана с величиной r и легко может быть получена из 2.1, если принять в ней s = dw , где w - ширина резистивной пленки, d - толщина резистивной пленки. Тогда
где - удельное поверхностное сопротивление, зависящее от толщины пленки d и имеющее размерность Ом/ (Ом/квадрат). Если l = w, то R=rs, причем величина сопротивления не зависит от размеров сторон На рис.2.1 представлено устройство пленочного резистора. На диэлектрическое цилиндрическое основание 1 нанесена резистивная пленка 2. На торцы цилиндра надеты контактные колпачки 3 из проводящего материала с припаянными к ним выводами 4. Для защиты резистивной пленки от воздействия внешних факторов резистор покрывают защитной пленкой 5. Сопротивление такого резистора определяется соотношением
где l - длина резистора (расстояние между контактными колпачками), D - диаметр цилиндрического стержня.на резистора (расстояние между контактными колпачками), D - диаметр цилиндрического стержня. Такая конструкция резистора обеспечивает получение сравнительно небольших сопротивлений ( сотни Ом ). Для увеличения сопротивления резистора резистивнную пленку 2 наносят на поверхность керамического цилиндра 1 в виде спирали ( рис. 2.2 ). Рис. 2.2 Сопротивление такого резистора определяется соотношением
где t - шаг спирали, а - ширина канавки (расстояние между соседними виткамиспирали), число витков спирали. На рис. 2.3 показана конструкция объемного резистора, представляющего собой стержень 1 из токопроводящей композиции круглого или прямоугольного сечения с запрессованными проволочными выводами 2. Снаружи стержень защищен стеклоэмалевой или стеклокерамической оболочкой 3. Сопротивление такого резистора определяется соотношением (2.1). Постоянный проволочный резистор представляет собой изоляционный каркас, на который намотана проволока с высоким удельным электрическим сопротивлением. Снаружи резистор покрывают термостойкой эмалью, спрессовывают пластмассой либо герметизируют металлическим корпусом, закрываемым с торцов керамическими шайбами. Для гибридных ИМС выпускаются микромодульные резисторы, представляющие собой стержень из стекловолокна с нанесенным на поверхность тонким слоем токопро водящей композиции. Такие резисторы приклеиваются к контактным площадкам подложек токопроводящим клеем- контактолом. Конструкции переменных резисторов гораздо сложнее, чем постоянных. На рис. 2.4 представлена конструкция переменного непроволочного резистора круглой формы.
Он состоит из подвижной и неподвижной частей. Неподвижная часть представляет собой пластмассовый корпус 2, в котором смонтирован токопроводящий элемент 3, имеющий подковообразную форму. Посредством заклепок 6 он крепится к круглому корпусу. Эти заклепки соединены с внешними выводами 4. Подвижная часть представляет собой вращающуюся ось, с торцом которой 7 посредством чеканки соединена изоляционная планка 8, на которой смонтирован подвижный контакт 1 (токосъемник), соединенный с внешним выводом. Угол поворота оси составляет 270° и ограничивается стопором 5. Существуют и другие конструкции переменных непроволочных резисторов. Токопроводящий элемент в них бывает тонкослойным металлическим или металлоксидным (резисторы типа СП2), пленочным композиционным (резисторы типа СП4). Переменные резисторы могут иметь разный закон изменения сопротивления в зависимости от угла поворота оси (рис.2.5). Рис. 2.5 У линейных резисторов (типа А) сопротивление зависит от угла поворота линейно. У логарифмических резисторов (тип Б) сопротивление изменяется по логарифмическому закону, а у резисторов типа В - по обратнологарифмическому. Кроме того, существуют резисторы, у которых сопротивление изменяется по закону синуса (тип И) или косинуса (тип Б). Некоторые типы переменных резисторов состоят из двух переменных резисторов объединенных в единую конструкцию, в которой токосъемники расположены на общей оси. Существуют переменные резисторы, содержащие выключатель, контакты которого разомкнуты, если ось резистора повернута в крайнее положение при вращении против движения часовой стрелки. При повороте оси по движению часовой стрелки на небольшой угол контакты выключателя замыкаются. Некоторые типы резисторов комплектуются специальными стопорящими устройствами, жестко фиксирующими положение оси. На рис.2.6 показана конструкция переменного проволочного резистора с круговым перемещением токосъемника. В пластмассовом корпусе 7 с помощью цанговой втулки 3 укреплена поворотная ось 2, на которой закреплен изоляционный диск с контактной пружиной (ползуном) 4, скользящей по проводу обмотки 9, - укрепленной на гетинаксовой дугообразной пластине 6. Концы обмотки соединены с выводами 8, а ползун через контактное кольцо соединен с внешним контактным лепестком 10. Положение оси может быть зафиксировано стопорной разрезной гайкой 1, а угол поворота оси ограничен выступами корпуса, в которые упирается планка-ограничитель 5, закрепленная на оси. Помимо переменных резисторов с круговым перемещением существуют резисторы с прямолинейным перемещением подвижного контакта. В этом случае контактный ползун укрепляется не на поворотной, а на червячной оси. Выбор типа резистора (постоянного или переменного) для конкретной схемы производится с учетом условий работы и определяется параметрами резисторов. Резистор нельзя рассматривать как, элемент, обладающий только активным сопротивлением, определяемым его резистивным элементом. Помимо сопротивления резистивного элемента он имеет емкость, индуктивность и дополнительные паразитные сопротивления. Эквивалентная схема постоянного резистора представлена на рис. 2.7. На схеме RR- сопротивление резистивного элемента, Rиз— сопротивление изоляции, определяемое свойством защитного покрытия и основания, Rk - сопротивление контактов, LR— эквивалентная индуктивность резиcтивного слоя и выводов резистора, СR - эквивалентная емкость резистора, CB1 и CB2- емкости выводов. Активное сопротивление резистора определяется соотношением
Сопротивление RКимеет существенное значение только для низкоомных резисторов. Сопротивление Rизпрактически влияет на общее сопротивление только высокоомных резисторов.Реактивные элементы определяют частотные свойства резистора. Из-за их наличия сопротивление резистора на высоких частотах становится комплексным. Относительная частотная погрешность определяется соотношением
где Z - комплексное сопротивление резистора на частоте w .На практике, как правило, величины L и С неизвестны. Поэтому для некоторых типов резисторов указывается значение обобщенной постоянной времени tmax , которая связана с относительной частной погрешностью сопротивления приближенным уравнением:
Частотные свойства непроволочных резисторов значительно лучше, чем проволочных. 2.1.2. Параметры резисторов. Параметры резисторов характеризуют эксплуатационные возможности применения конкретного типа резистора в конкретной электрической схеме. Номинальное сопротивление Rном и его допустимое отклонение от номинала ±DR являются основными параметрами резисторов. Номиналы сопротивлений стандартизованы в соответствии с ГОСТ 10318-74, а допустимые отклонения - в соответствии с ГОСТ 9664-74. Для резисторов общего назначения ГОСТ предусматривает шесть рядов номинальных сопротивлений: Е6, Е12, Е24, Е48, Е96 и Е192. Цифра указывает количество номинальных значений в данном ряду, которые согласованы с допустимыми отклонениями (см. табл.2.1). Таблица 2.1
Номинальные значения сопротивлений определяются числовыми коэффициентами, входящими в табл.2.1, которые умножаются на 10n, где п -целое пложительное число. Так например, числовому коэффициенту 1,0 соответствуют резисторы с номинальным сопротивлением, равным 10, 100, 1000 Ом и т.д.Допустимые отклонения от номинала для ряда Е6 составляют ±20%, для ряда Е12 - ± 10%, для ряда Е24 - ± 5%. Это значит, что резистор с сопротивлением 1,5к0м из ряда Е12 может обладать сопротивлением в пределах от 1,35 до 1,65к0м, а тот же резистор из ряда Е6 - в пределах от 1,2 до 1,8 кОм. Числовые коэффициенты, определяющие номинальные значения сопротивлений, подобраны так, что образуется непрерывная шкала сопротивлений, т.е. максимально возможное сопротивление какого-либо номинала совпадает (или несколько больше) с минимальной величиной сопротивления соседнего номинала. Прецизионные резисторы имеют отклонения от номинала ±2%; ±1%;±0,5%; ±0,2%; ±0,1%; ±0,05%; ±0,02% и ±0,01%. Номинальная мощность рассеивания Рном определяет допустимую электрическую нагрузку, которую способен выдержать резистор в течение длительного времени при заданной стабильности сопротивления. Как уже отмечалось, протекание тока через резистор связано с выделением в нем тепла, которое должно рассеиваться в окружающую среду. Мощность, выделяемая в резисторе в виде тепла, определяется величиной приложенного к нему напряжения U и протекающего тока I и равна
Мощность, рассеиваемая резистором в окружающую среду, пропорциональна разности температур резистора TR и окружающей среды ТO
и зависит от условий охлаждения резистора, определяемых величиной теплового сопротивления Rт которое тем меньше, чем больше поверхность резистора и теплопроводность материала резистора. Из условия баланса мощностей можно определить температуру резистора, что наглядно показано на рис. 2.8а.
Следовательно, при увеличении мощности, выделяемой в резисторе, возрастает его температура TR , что может привести к выходу резистора из строя. Для того чтобы этог не произошло, необходимо уменьшить RT , что достигается увеличением размеров резистора. Для каждого типа резистора существует определенная максимальная температура Tmax , превышать которую нельзя. Температура TR , как следует из вышеизложенного, зависит также от температуры окружающей среды. Если она очень высока, то температура TR можетпревысить максимальную, чтобы этого не произошло, необходимо уменьшать мощность, выделяемую в резисторе ( 2.8, б ). Для всех типов резисторов в ТУ оговариваются указанные зависимости мощности от температуры окружающей среды ( рис.2.8,в ).Номинальные мощности стандартизованы ( ГОСТ 9663-61 ) и соответствуют ряду: 0,01; 0,025; 0,05; 0,121; 0,25; 0,5; 1; 1,2; 5; 8; 10; 16; 25; 50; 75; 100; 160; 250; 500. Предельное рабочее напряжение UПРЕД определяет величину допустимого напряжения, которое может быть приложено к резистору. Для резисторов с небольшой величиной сопротивления ( сотни ОМ ) эта величина определяется конструкцией резистора и рассчитывается по формуле:
Для остальных резисторов предельное рабочее напряжение определяется конструкцией резистора и ограничивается возможностью электрического пробоя, который, как правило, происходит по поверхности между выводами резистора или между витками спиральной нарезки. Напряжение пробоя зависит от длины резистора и давления воздуха. При длине резистора, не превышающей 5 см, оно определяется по формуле:
где Р - давление в мм рт. ст., l - длина резистора в см. Величина Uпред указывает в ТУ, она всегда меньше Uпроб. При испытании резисторов на них подают испытательное напряжение Uисп, которое больше Uпред и меньше Uпроб. Температурный коэффициент сопротивления (ТКС) характеризует относительное изменение сопротивления при изменении температуры
Он может быть как положительным, так и отрицательным. Если резистивная пленка толстая, то она ведет себя как объемное тело, сопротивление которого с ростом температуры возрастает. Если же резистивная пленка тонкая, то она состоит из отдельных "островков", сопротивление такой пленки с ростом температуры уменьшается, так как улучшается контакт между отдельными "островками". У различных резисторов эта величина лежит в пределах ± (7-12)10-4. Коэффициент старения bR характеризует изменение сопротивления, которое вызывается структурными изменениями резистивного элемента за счет процессов окисления, кристаллизации и т.д.
В ТУ обычно указывается относительное изменение сопротивления в процентах за определенное время (1000 или 10000 ч). Коэффициент напряжения Кн характеризует влияние величины приложенного напряжения на сопротивление. В некоторых типах резисторов при высоких напряжениях изменяется величина сопротивления. В непроволочных резисторах это обусловлено уменьшением контактного сопротивления между отдельными зернами резистивной пленки. В проволочных резисторах это обусловлено дополнительным разогревом проволоки при повышенных напряжениях:
где R100- сопротивление резистора при напряжении UПРЕД, R10 -сопротивление резистора при напряжении 0,1 Uпред. ЭДС шумов резистора. Электроны в резистивном элементе находятся в состоянии хаотического теплового движения, в результате которого между любыми точками резистивного элемента возникает случайно изменяющееся электрическое напряжение и между выводами резистора появляется ЭДС тепловых шумов. Тепловой шум характеризуется непрерывным, широким, практически равномерным спектром. Величина ЭДС тепловых шумов определяется соотношением:
где К = 1,38 · 10 -23 Д ж/град- постоянная Больцмана, Т - абсолютная температура в градусах шкалы Кельвина, R - сопротивление. Ом, Df- полоса частот, в которой измеряются шумы. При комнатной температуре (Т =300° К)
Если резистор включен на входе высокочувствительного усилителя, то на его выходе будет слышен характерный шум. Уменьшить уровень этих шумов можно лишь уменьшая величину сопротивления R или температуру 7. Помимо тепловых шумов существует токовый шум, возникающий при протекании через резистор тока. Этот шум обусловлен дискретной структурой резистивного элемента. При протекании тока возникают местные перегревы, в результате которых изменяются контакты между отдельными частицами токопроводяще-го слоя и, следовательно, флюктуирует (изменяется) величина сопротивления, что ведет к появлению между выводами резистора ЭДС токовых шумов Еi . Токовый шум, также как и тепловой, имеет непрерывный спектр, но интенсивность его увеличивается в области низких частот. Поскольку величина тока, протекающего через резистор, зависит от величины приложенного напряжения U, то в первом приближении можно считать, что
где Кi - коэффициент, зависящий от конструкции резистора, свойств резистивного слоя и полосы частот. Величина , Кi указывает в ТУ и лежит в пределах от 0,2 до 20 мкВ/В. Чем однороднее структура, тем меньше токовый щум. У металлопленочных и углеродистых резисторов величина Кi Ј1,5 мкВ/В, у композиционных поверхностных Кi Ј 40 мкВ/В, у композиционных объемных Кi Ј 45 мкВ/В. У проволочных резисторов токовый шум отсутствует. Токовый щум измеряется в полосе частот от 60 до 6000 Гц. Его величина значительно превышает величину теплового шума. 2.1.3.Система обозначений и маркировка резисторов.До 1968г. обозначение резисторов состояло из букв, отражающих конструктивно-технологические особенности данного типа резистора, например, МЛТ - металлопленочный лакированный теплостойкий. С 1968г. в соответствии с ГОСТ 13453-68 постоянные резисторы стали обозначаться буквой С, а переменные буквами СП. По конструкции токонесущей части резисторы были разделены на шесть групп: 1 - непроволочные углеродистые или бороуглеродистые, 2- непроволочные металлопленочные или металлоокисные, 3- непроволочные тонкопленочные композиционные, 4- непроволочные объемные композиционные, 5- проволочные, 6- резисторы для сверхвысоких частот. Согласно ГОСТ в обозначении резисторов после букв С или СП стоит цифра, указывающая номер группы, а затем через дефис - номер конкретной конструкции резистора. Например, обозначение С2-8: резистор постоянный второй группы, восьмой вариант конструкции. С 1980г. стала применяться другая система обозначений, также состоящая из трех элементов. Первый элемент - буквенный: Р - постоянный резистор, РП - переменный резистор, РН - набор резисторов. Второй элемент - цифра: 1 - непроволочный резистор, 2 - проволочный резистор. Третий элемент - цифра, обозначающая разновидность конструкции. Например, Р2-15 означает: резистор постоянный, проволочный, 15 вариант конструкции. В конструкторской документации помимо типа резистора указывается номинальная мощность, номинальное сопротивление, допуск на сопротивления и ряд других параметров. На принципиальных схемах резисторы изображаються в виде прямоугольника с указанием величины сопротивления, мощности и порядкового номера. Величина мощности указывается наклонными, продольными или поперечными линиями внутри прямоугольника: а) 0,125 Вт; б) 0.25 Вт; в) 0,5 Вт; г) 11 Вт; д) 2 Вт. Изображение переменных резисторов показано на рис. 2.9, е, а подстроечных - на рис. 2.9,ж Основные параметры резисторов указываются на его корпусе, но для миниатюрных резисторов не хватает места на корпусе, поэтому ГОСТ 11076 - 69 предусматривает сокращенную буквенно - кодовую маркировку. При такой маркировки вместо запятой в наборе цифр, указывающих номинальное значение сопротивления, ставят букву, указывающую, в каких единицах выраженно сопротивление: R ( или Е ) - в омах, К - в килоомах, М - мегаомах, G - гигаомах, Т - тераомах. При этом ноль, стоящий до или после запятой, не ставят. После указания величины номинального сопротивления ставится буква, обозначающая допуск, в соответствии с табл. 2.2. Кроме того, в последнии годы в соответствии с СТ СЭВ 1810 - 79 стала применяться международная система обозначений в соответствии таблицей 2.3. Например, резистор с сопротивлением 0,47 кОм и допуском ± 20% маркируется К47В или К47М. Таблица 2.2
Таблица 2.3
Помимо буквенно-цифровой применяется цветовая индексация величины номинального сопротивления и допуска на корпусе резистора (ГОСТ 17598-72). Вблизи одного из торцов корпуса наносятся 4 цветных полоски: первая обозначает первую цифру номинала, вторая обозначает вторую цифру номинала, третья -множитель; четвертая - величину допуска, цвет полосок стандартизован. 2.1.4.Конструктивно-технологические разновидности резисторов.В зависимости от конкретных условий работы в РЭА применяются различные типы резисторов. Непроволочные тонкослойные постоянные резисторы. У резисторов группы С 1 токопроводящий слой представляет собой пленку пиролитического углерода, а у резисторов группы С2 - пленку сплава металла или оксида металла. Эти резисторы являются резисторами широкого применения с допусками ±5, ±10 или ±20% и мощностью от 0,125 до 2 Вт. Помимо резисторов С1 и С2 к этой категория резисторов относятся резисторы типов МЛТ, МТ и ВС. Поскольку металл обладает более высокой теплостойкостью, чем углерод, то резисторы С2 при равной мощности имеют меньшие габариты, чем С1. Резисторы С2 обладают более высокой стабильностью при циклических изменениях температуры. Недостатком металлопленочных резисторов является небольшая стойкость к импульсной нагрузке и меньший частотный диапазон, чем у углеродистых. Объясняется это тем, что токопроводящий слой у этих резисторов толще, чем у углеродистых, поэтому увеличивается паразитная емкость между витками резистивной спирали. На основе резисторов С2 создаются также прецизионные резисторы с допусками ±(0,1-1 )% . Прецизионные резисторы имеют большие габариты, чем резисторы общего применения. Это облегчает тепловые режимы и повышает стабильность свойств проводящего слоя. Композиционные резисторы. У этих резисторов токопроводящий материал получают путем смешивания проводящей компоненты (графита или сажи) со связывающими компонентами, наполнителем, пластификатором и отвердителем. В резисторах группы СЗ полученная композиция наносится на поверхность изоляционного основания, а в резисторах группы С4 спрессовывается в виде объемного цилиндра или параллелепипеда. В зависимости от состава композиционные материалы имеют очень широкий диапазон удельных сопротивлений. Объемные композиционные резисторы С4 имеют прямоугольную форму и предназначены для компоновки на печатных платах. Они обладают высокой теплостойкостью (до 350°С) и имеют небольшие габариты. Недостатком композиционных резисторов является высокий уровень токовых шумов, что объясняется крупнозернистой структурой проводящего материала. Проволочные постоянные резисторы. Для изготовления этих резисторов используют провода из специальных сплавов, имеющих высокое удельное сопротивление, хорошую теплостойкость и малый температурный коэффициент сопротивления. Эти резисторы обладают очень высокой допустимой мощностью рассеивания (десятки ватт) при относительно небольших размерах, высокой точностью и хорошей температурной стабильностью. Так как резисторы изготавливают путем намотки провода на каркас, то они имеют большую индуктивность и собственную емкость. Для уменьшения индуктивности применяют бифилярную намотку, при которой обмотку резистора выполняют сдвоенным проводом, благодаря чему поля расположенных рядом витков направлены навстречу друг другу и вычитаются. Уменьшение индуктивности достигается также путем намотки на плоский каркас. Недостатком бифилярной намотки является большая собственная емкость. Для получения малой индуктивности и емкости применяют разбивку обмотки на несколько секций, в каждой из которых поочередно меняется направление намотки. Проволочные резисторы значительно дороже тонкопленочных, поэтому применяют их в тех случаях, когда характеристики тонкопленочных резисторов не удовлетворяют предъявляемым требованиям. Высокочастотные резисторы и резисторы СВЧ. Эти резисторы обладают небольшой собственной индуктивностью и емкостью, что обеспечивается отсутствием спиральной нарезки, но при этом величина сопротивления не превышает 200 - 300 Ом. Однако это не является недостатком, так как на СВЧ высокие номиналы сопротивлений не применяются. В ряде случаев высокочастотные резисторы изготавливаются без проволочных выводов и эмалевого покрытия, что уменьшает паразитную индуктивность и шунтирующее действие диэлектрика. На сверхвысоких частотах применяют резисторы группы С6, способные работать на частотах до 10 ГГц. К категории высокочастотных относятся также резисторы типов: С2-11, С2-34, МОН (маталлоокисные незащищенные) и МОУ - (металлоокисные ультравысокочастотные). На высоких частотах находят применение, кроме того, микропроволочные малогабаритные резисторы типа С5-32 Т, имеющие длину 6 мм и диаметр 2,6 мм, и паразитную индуктивность не более 0,1 мкГн. Эти резисторы имеют мощность 0,125 Вт и номинальные сопротивления от 0,24 до 300 Ом с точностью 0,5, 1,2, и 5%. 2.1.5. Специальные резисторы.К каткгории специальных резисторов относятся резисторы, сопротивление которых зависит от внешних факторов: темперетуры, освещенности. магнитного поля и т.д. Варисторы - полупроводниковые резисторы, сопротивление которых зависит от приложенного к ним напряжения. Варисторы изготавливаются путем спекания криссталов карбида кремния и связующих веществ. В готовой структуре варистора между криссталами кремния существуют мельчайшие зазоры. При приложению к варистору внешнего напряжения происходит перекрытие этих зазоров, в результате чего сопротивление варистора уменьшается. Типичный вид вольт - амперной характеристики показан на рис. 2.10.
Параметрами варистора являются: &nb Источник: http://dvo.sut.ru | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Просмотров: 8866
| Теги: |
Всего комментариев: 0 | |